Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Hum Reprod ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600621

RESUMO

STUDY QUESTION: Can generative artificial intelligence (AI) models produce high-fidelity images of human blastocysts? SUMMARY ANSWER: Generative AI models exhibit the capability to generate high-fidelity human blastocyst images, thereby providing substantial training datasets crucial for the development of robust AI models. WHAT IS KNOWN ALREADY: The integration of AI into IVF procedures holds the potential to enhance objectivity and automate embryo selection for transfer. However, the effectiveness of AI is limited by data scarcity and ethical concerns related to patient data privacy. Generative adversarial networks (GAN) have emerged as a promising approach to alleviate data limitations by generating synthetic data that closely approximate real images. STUDY DESIGN, SIZE, DURATION: Blastocyst images were included as training data from a public dataset of time-lapse microscopy (TLM) videos (n = 136). A style-based GAN was fine-tuned as the generative model. PARTICIPANTS/MATERIALS, SETTING, METHODS: We curated a total of 972 blastocyst images as training data, where frames were captured within the time window of 110-120 h post-insemination at 1-h intervals from TLM videos. We configured the style-based GAN model with data augmentation (AUG) and pretrained weights (Pretrained-T: with translation equivariance; Pretrained-R: with translation and rotation equivariance) to compare their optimization on image synthesis. We then applied quantitative metrics including Fréchet Inception Distance (FID) and Kernel Inception Distance (KID) to assess the quality and fidelity of the generated images. Subsequently, we evaluated qualitative performance by measuring the intelligence behavior of the model through the visual Turing test. To this end, 60 individuals with diverse backgrounds and expertise in clinical embryology and IVF evaluated the quality of synthetic embryo images. MAIN RESULTS AND THE ROLE OF CHANCE: During the training process, we observed consistent improvement of image quality that was measured by FID and KID scores. Pretrained and AUG + Pretrained initiated with remarkably lower FID and KID values compared to both Baseline and AUG + Baseline models. Following 5000 training iterations, the AUG + Pretrained-R model showed the highest performance of the evaluated five configurations with FID and KID scores of 15.2 and 0.004, respectively. Subsequently, we carried out the visual Turing test, such that IVF embryologists, IVF laboratory technicians, and non-experts evaluated the synthetic blastocyst-stage embryo images and obtained similar performance in specificity with marginal differences in accuracy and sensitivity. LIMITATIONS, REASONS FOR CAUTION: In this study, we primarily focused the training data on blastocyst images as IVF embryos are primarily assessed in blastocyst stage. However, generation of an array of images in different preimplantation stages offers further insights into the development of preimplantation embryos and IVF success. In addition, we resized training images to a resolution of 256 × 256 pixels to moderate the computational costs of training the style-based GAN models. Further research is needed to involve a more extensive and diverse dataset from the formation of the zygote to the blastocyst stage, e.g. video generation, and the use of improved image resolution to facilitate the development of comprehensive AI algorithms and to produce higher-quality images. WIDER IMPLICATIONS OF THE FINDINGS: Generative AI models hold promising potential in generating high-fidelity human blastocyst images, which allows the development of robust AI models as it can provide sufficient training datasets while safeguarding patient data privacy. Additionally, this may help to produce sufficient embryo imaging training data with different (rare) abnormal features, such as embryonic arrest, tripolar cell division to avoid class imbalances and reach to even datasets. Thus, generative models may offer a compelling opportunity to transform embryo selection procedures and substantially enhance IVF outcomes. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by a Horizon 2020 innovation grant (ERIN, grant no. EU952516) and a Horizon Europe grant (NESTOR, grant no. 101120075) of the European Commission to A.S. and M.Z.E., the Estonian Research Council (grant no. PRG1076) to A.S., and the EVA (Erfelijkheid Voortplanting & Aanleg) specialty program (grant no. KP111513) of Maastricht University Medical Centre (MUMC+) to M.Z.E. TRIAL REGISTRATION NUMBER: Not applicable.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38520066

RESUMO

INTRODUCTION: Implantation failure after transferring morphologically "good-quality" embryos in in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) may be explained by impaired endometrial receptivity. Analyzing the endometrial transcriptome analysis may reveal the underlying processes and could help in guiding prognosis and using targeted interventions for infertility. This exploratory study investigated whether the endometrial transcriptome profile was associated with short-term or long-term implantation outcomes (ie success or failure). MATERIAL AND METHODS: Mid-luteal phase endometrial biopsies of 107 infertile women with one full failed IVF/ICSI cycle, obtained within an endometrial scratching trial, were subjected to RNA-sequencing and differentially expressed genes analysis with covariate adjustment (age, body mass index, luteinizing hormone [LH]-day). Endometrial transcriptomes were compared between implantation failure and success groups in the short term (after the second fresh IVF/ICSI cycle) and long term (including all fresh and frozen cycles within 12 months). The short-term analysis included 85/107 women (33 ongoing pregnancy vs 52 no pregnancy), excluding 22/107 women. The long-term analysis included 46/107 women (23 'fertile' group, ie infertile women with a live birth after ≤3 embryos transferred vs 23 recurrent implantation failure group, ie no live birth after ≥3 good quality embryos transferred), excluding 61/107 women not fitting these categories. As both analyses drew from the same pool of 107 samples, there was some sample overlap. Additionally, cell type enrichment scores and endometrial receptivity were analyzed, and an endometrial development pseudo-timeline was constructed to estimate transcriptomic deviations from the optimum receptivity day (LH + 7), denoted as ΔWOI (window of implantation). RESULTS: There were no significantly differentially expressed genes between implantation failure and success groups in either the short-term or long-term analyses. Principal component analysis initially showed two clusters in the long-term analysis, unrelated to clinical phenotype and no longer distinct following covariate adjustment. Cell type enrichment scores did not differ significantly between groups in both analyses. However, endometrial receptivity analysis demonstrated a potentially significant displacement of the WOI in the non-pregnant group compared with the ongoing pregnant group in the short-term analysis. CONCLUSIONS: No distinct endometrial transcriptome profile was associated with either implantation failure or success in infertile women. However, there may be differences in the extent to which the WOI is displaced.

3.
Circ Genom Precis Med ; 17(2): e004416, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38516780

RESUMO

BACKGROUND: Preimplantation genetic testing (PGT) is a reproductive technology that selects embryos without (familial) genetic variants. PGT has been applied in inherited cardiac disease and is included in the latest American Heart Association/American College of Cardiology guidelines. However, guidelines selecting eligible couples who will have the strongest risk reduction most from PGT are lacking. We developed an objective decision model to select eligibility for PGT and compared its results with those from a multidisciplinary team. METHODS: All couples with an inherited cardiac disease referred to the national PGT center were included. A multidisciplinary team approved or rejected the indication based on clinical and genetic information. We developed a decision model based on published risk prediction models and literature, to evaluate the severity of the cardiac phenotype and the penetrance of the familial variant in referred patients. The outcomes of the model and the multidisciplinary team were compared in a blinded fashion. RESULTS: Eighty-three couples were referred for PGT (1997-2022), comprising 19 different genes for 8 different inherited cardiac diseases (cardiomyopathies and arrhythmias). Using our model and proposed cutoff values, a definitive decision was reached for 76 (92%) couples, aligning with 95% of the multidisciplinary team decisions. In a prospective cohort of 11 couples, we showed the clinical applicability of the model to select couples most eligible for PGT. CONCLUSIONS: The number of PGT requests for inherited cardiac diseases increases rapidly, without the availability of specific guidelines. We propose a 2-step decision model that helps select couples with the highest risk reduction for cardiac disease in their offspring after PGT.


Assuntos
Tomada de Decisão Clínica , Doenças Genéticas Inatas , Testes Genéticos , Cardiopatias , Diagnóstico Pré-Implantação , Encaminhamento e Consulta , Feminino , Humanos , Testes Genéticos/métodos , Cardiopatias/congênito , Cardiopatias/diagnóstico , Cardiopatias/genética , Cardiopatias/prevenção & controle , Diagnóstico Pré-Implantação/métodos , Masculino , Tomada de Decisão Clínica/métodos , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/genética , Cardiomiopatias/diagnóstico , Cardiomiopatias/genética , Gestão de Riscos , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/prevenção & controle , Heterozigoto , Estudos Prospectivos , Características da Família
4.
Nat Med ; 29(12): 3233-3242, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37996709

RESUMO

Pregnancy loss is often caused by chromosomal abnormalities of the conceptus. The prevalence of these abnormalities and the allocation of (ab)normal cells in embryonic and placental lineages during intrauterine development remain elusive. In this study, we analyzed 1,745 spontaneous pregnancy losses and found that roughly half (50.4%) of the products of conception (POCs) were karyotypically abnormal, with maternal and paternal age independently contributing to the increased genomic aberration rate. We applied genome haplarithmisis to a subset of 94 pregnancy losses with normal parental and POC karyotypes. Genotyping of parental DNA as well as POC extra-embryonic mesoderm and chorionic villi DNA, representing embryonic and trophoblastic tissues, enabled characterization of the genomic landscape of both lineages. Of these pregnancy losses, 35.1% had chromosomal aberrations not previously detected by karyotyping, increasing the rate of aberrations of pregnancy losses to 67.8% by extrapolation. In contrast to viable pregnancies where mosaic chromosomal abnormalities are often restricted to chorionic villi, such as confined placental mosaicism, we found a higher degree of mosaic chromosomal imbalances in extra-embryonic mesoderm rather than chorionic villi. Our results stress the importance of scrutinizing the full allelic architecture of genomic abnormalities in pregnancy loss to improve clinical management and basic research of this devastating condition.


Assuntos
Aborto Espontâneo , Placenta , Gravidez , Feminino , Humanos , Primeiro Trimestre da Gravidez/genética , Aborto Espontâneo/genética , Prevalência , Aberrações Cromossômicas , Mosaicismo , DNA
5.
Hum Reprod Update ; 29(6): 773-793, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37468438

RESUMO

BACKGROUND: Modern lifestyle has led to an increase in the age at conception. Advanced age is one of the critical risk factors for female-related infertility. It is well known that maternal age positively correlates with the deterioration of oocyte quality and chromosomal abnormalities in oocytes and embryos. The effect of age on endometrial function may be an equally important factor influencing implantation rate, pregnancy rate, and overall female fertility. However, there are only a few published studies on this topic, suggesting that this area has been under-explored. Improving our knowledge of endometrial aging from the biological (cellular, molecular, histological) and clinical perspectives would broaden our understanding of the risks of age-related female infertility. OBJECTIVE AND RATIONALE: The objective of this narrative review is to critically evaluate the existing literature on endometrial aging with a focus on synthesizing the evidence for the impact of endometrial aging on conception and pregnancy success. This would provide insights into existing gaps in the clinical application of research findings and promote the development of treatment options in this field. SEARCH METHODS: The review was prepared using PubMed (Medline) until February 2023 with the keywords such as 'endometrial aging', 'receptivity', 'decidualization', 'hormone', 'senescence', 'cellular', 'molecular', 'methylation', 'biological age', 'epigenetic', 'oocyte recipient', 'oocyte donation', 'embryo transfer', and 'pregnancy rate'. Articles in a language other than English were excluded. OUTCOMES: In the aging endometrium, alterations occur at the molecular, cellular, and histological levels suggesting that aging has a negative effect on endometrial biology and may impair endometrial receptivity. Additionally, advanced age influences cellular senescence, which plays an important role during the initial phase of implantation and is a major obstacle in the development of suitable senolytic agents for endometrial aging. Aging is also accountable for chronic conditions associated with inflammaging, which eventually can lead to increased pro-inflammation and tissue fibrosis. Furthermore, advanced age influences epigenetic regulation in the endometrium, thus altering the relation between its epigenetic and chronological age. The studies in oocyte donation cycles to determine the effect of age on endometrial receptivity with respect to the rates of implantation, clinical pregnancy, miscarriage, and live birth have revealed contradictory inferences indicating the need for future research on the mechanisms and corresponding causal effects of women's age on endometrial receptivity. WIDER IMPLICATIONS: Increasing age can be accountable for female infertility and IVF failures. Based on the complied observations and synthesized conclusions in this review, advanced age has been shown to have a negative impact on endometrial functioning. This information can provide recommendations for future research focusing on molecular mechanisms of age-related cellular senescence, cellular composition, and transcriptomic changes in relation to endometrial aging. Additionally, further prospective research is needed to explore newly emerging therapeutic options, such as the senolytic agents that can target endometrial aging without affecting decidualization. Moreover, clinical trial protocols, focusing on oocyte donation cycles, would be beneficial in understanding the direct clinical implications of endometrial aging on pregnancy outcomes.


Assuntos
Infertilidade Feminina , Gravidez , Feminino , Humanos , Epigênese Genética , Senoterapia , Resultado da Gravidez , Taxa de Gravidez , Implantação do Embrião/fisiologia , Endométrio/fisiologia
6.
Eur J Hum Genet ; 31(8): 918-924, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37337089

RESUMO

Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder that affects the skin and the nervous system. The condition is completely penetrant with extreme clinical variability, resulting in unpredictable manifestations in affected offspring, complicating reproductive decision-making. One of the reproductive options to prevent the birth of affected offspring is preimplantation genetic testing (PGT). We performed a retrospective review of the medical files of all couples (n = 140) referred to the Dutch PGT expert center with the indication NF1 between January 1997 and January 2020. Of the couples considering PGT, 43 opted out and 15 were not eligible because of failure to identify the underlying genetic defect or unmet criteria for in vitro fertilization (IVF) treatment. The remaining 82 couples proceeded with PGT. Fertility assessment prior to IVF treatment showed a higher percentage of male infertility in males affected with NF1 compared to the partners of affected females. Cardiac evaluations in women with NF1 showed no contraindications for IVF treatment or pregnancy. For 67 couples, 143 PGT cycles were performed. Complications of IVF treatment were not more prevalent in affected females compared to partners of affected males. The transfer of 174 (out of 295) unaffected embryos led to 42 ongoing pregnancies with a pregnancy rate of 24.1% per embryo transfer. There are no documented cases of misdiagnosis following PGT in this cohort. With these results, we aim to provide an overview of PGT for NF1 with regard to success rate and safety, to optimize reproductive counseling and PGT treatment for NF1 patients.


Assuntos
Neurofibromatose 1 , Diagnóstico Pré-Implantação , Gravidez , Humanos , Masculino , Feminino , Diagnóstico Pré-Implantação/métodos , Neurofibromatose 1/diagnóstico , Neurofibromatose 1/genética , Testes Genéticos/métodos , Fertilização in vitro , Transferência Embrionária/psicologia , Estudos Retrospectivos , Aneuploidia
7.
Hum Reprod ; 37(11): 2709-2721, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36206092

RESUMO

STUDY QUESTION: Can we detect DNA methylation differences between ART children that underwent embryo culture in different media? SUMMARY ANSWER: We identified no significant differences in site-specific or regional DNA methylation between the different culture medium groups. WHAT IS KNOWN ALREADY: Embryo culture in G3 or K-SICM medium leads to differences in embryonic, neonatal and childhood outcomes, including growth and weight. The methylome may mediate this association as the period of in vitro culture of ART treatments coincides with epigenetic reprogramming. STUDY DESIGN, SIZE, DURATION: This study was conducted as a follow-up to a previous culture medium comparison study in which couples were pseudo-randomized to embryo culture in G3 or K-SICM medium. Of the resultant singletons, 120 (n = 65 G3, n = 55 K-SICM), were recruited at age 9. PARTICIPANTS/MATERIALS, SETTING, METHODS: The ART children provided a saliva sample from which the methylome was analysed using the Infinium MethylationEPIC array. After quality and context filtering, 106 (n = 57 G3, n = 49 K-SICM) samples and 659 708 sites were retained for the analyses. Differential methylation analyses were conducted using mixed effects linear models corrected for age, sex, sample plate and cell composition. These were applied to all cytosine-guanine dinucleotide (CpG) sites, various genomic regions (genes, promoters, CpG Islands (CGIs)) and as a targeted analysis of imprinted genes and birth weight-associated CpG sites. Differential variance was assessed using the improved epigenetic variable outliers for risk prediction analysis (iEVORA) algorithm and methylation outliers were identified using a previously defined threshold (upper or lower quartile plus or minus three times the interquartile range, respectively). MAIN RESULTS AND THE ROLE OF CHANCE: After correcting for multiple testing, we did not identify any significantly differentially methylated CpG sites, genes, promoters or CGIs between G3 and K-SICM children despite a lenient corrected P-value threshold of 0.1. Targeted analyses of (sites within) imprinted genes and birth weight-associated sites also did not identify any significant differences. The number of DNA methylation outliers per sample was comparable between the culture medium groups. iEVORA identified 101 differentially variable CpG sites of which 94 were more variable in the G3 group. LARGE SCALE DATA: Gene Expression Omnibus (GEO) GSE196432. LIMITATIONS, REASONS FOR CAUTION: To detect significant methylation differences with a magnitude of <10% between the groups many more participants would be necessary; however, the clinical relevance of such small differences is unclear. WIDER IMPLICATIONS OF THE FINDINGS: The results of this study are reassuring, suggesting that if there is an effect of the culture medium on DNA methylation (and methylation-mediated diseases risk), it does not differ between the two media investigated here. The findings concur with other methylome studies of ART neonates and children that underwent embryo culture in different media, which also found no significant methylome differences. STUDY FUNDING/COMPETING INTEREST(S): Study funded by March of Dimes (6-FY13-153), EVA (Erfelijkheid Voortplanting & Aanleg) specialty programme (grant no. KP111513) of Maastricht University Medical Centre (MUMC+) and the Horizon 2020 innovation (ERIN) (grant no. EU952516) of the European Commission. The authors do not report any conflicts of interest relevant to this study. TRIAL REGISTRATION NUMBER: Dutch Trial register-NL4083.


Assuntos
Epigenoma , Técnicas de Reprodução Assistida , Criança , Humanos , Peso ao Nascer , Metilação de DNA , Seguimentos , Ensaios Clínicos Controlados Aleatórios como Assunto
8.
Hum Reprod ; 37(11): 2700-2708, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36149256

RESUMO

STUDY QUESTION: Can the embryo tracking system (ETS) increase safety, efficacy and scalability of massively parallel sequencing-based preimplantation genetic testing (PGT)? SUMMARY ANSWER: Applying ETS-PGT, the chance of sample switching is decreased, while scalability and efficacy could easily be increased substantially. WHAT IS KNOWN ALREADY: Although state-of-the-art sequencing-based PGT methods made a paradigm shift in PGT, they still require labor intensive library preparation steps that makes PGT cost prohibitive and poses risks of human errors. To increase the quality assurance, efficiency, robustness and throughput of the sequencing-based assays, barcoded DNA fragments have been used in several aspects of next-generation sequencing (NGS) approach. STUDY DESIGN, SIZE, DURATION: We developed an ETS that substantially alleviates the complexity of the current sequencing-based PGT. With (n = 693) and without (n = 192) ETS, the downstream PGT procedure was performed on both bulk DNA samples (n = 563) and whole-genome amplified (WGAed) few-cell DNA samples (n = 322). Subsequently, we compared full genome haplotype landscapes of both WGAed and bulk DNA samples containing ETS or no ETS. PARTICIPANTS/MATERIALS, SETTING, METHODS: We have devised an ETS to track embryos right after whole-genome amplification (WGA) to full genome haplotype profiles. In this study, we recruited 322 WGAed DNA samples derived from IVF embryos as well as 563 bulk DNA isolated from peripheral blood of prospective parents. To determine possible interference of the ETS in the NGS-based PGT workflow, barcoded DNA fragments were added to DNA samples prior to library preparation and compared to samples without ETS. Coverages and variants were determined. MAIN RESULTS AND THE ROLE OF CHANCE: Current PGT protocols are quality sensitive and prone to sample switching. To avoid sample switching and increase throughput of PGT by sequencing-based haplotyping, six control steps should be carried out manually and checked by a second person in a clinical setting. Here, we developed an ETS approach in which one step only in the entire PGT procedure needs the four-eyes principal. We demonstrate that ETS not only precludes error-prone manual checks but also has no effect on the genomic landscape of preimplantation embryos. Importantly, our approach increases efficacy and throughput of the state-of-the-art PGT methods. LIMITATIONS, REASONS FOR CAUTION: Even though the ETS simplified sequencing-based PGT by avoiding potential errors in six steps in the protocol, if the initial assignment is not performed correctly, it could lead to cross-contamination. However, this can be detected in silico following downstream ETS analysis. Although we demonstrated an approach to evaluate purity of the ETS fragment, it is recommended to perform a pre-PGT quality control assay of the ETS amplicons with non-human DNA, such that the purity of each ETS molecule can be determined prior to ETS-PGT. WIDER IMPLICATIONS OF THE FINDINGS: The ETS-PGT approach notably increases efficacy and scalability of PGT. ETS-PGT has broad applicative value, as it can be tailored to any single- and few-cell sequencing approach where the starting specimen is scarce, as opposed to other methods that require a large number of cells as the input. Moreover, ETS-PGT could easily be adapted to any sequencing-based diagnostic method, including PGT for structural rearrangements and aneuploidies by low-pass sequencing as well as non-invasive prenatal testing. STUDY FUNDING/COMPETING INTEREST(S): M.Z.E. is supported by the EVA (Erfelijkheid Voortplanting & Aanleg) specialty program (grant no. KP111513) of Maastricht University Medical Centre (MUMC+), and the Horizon 2020 innovation (ERIN) (grant no. EU952516) of the European Commission. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Diagnóstico Pré-Implantação , Gravidez , Feminino , Humanos , Diagnóstico Pré-Implantação/métodos , Estudos Prospectivos , Testes Genéticos/métodos , Blastocisto , Sequenciamento de Nucleotídeos em Larga Escala
9.
NPJ Genom Med ; 7(1): 39, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768464

RESUMO

A growing number of children born are conceived through in vitro fertilisation (IVF), which has been linked to an increased risk of adverse perinatal outcomes, as well as altered growth profiles and cardiometabolic differences in the resultant individuals. Some of these outcomes have also been shown to be influenced by the use of different IVF culture media and this effect is hypothesised to be mediated epigenetically, e.g. through the methylome. As such, we profiled the umbilical cord blood methylome of IVF neonates that underwent preimplantation embryo development in two different IVF culture media (G5 or HTF), using the Infinium Human Methylation EPIC BeadChip. We found no significant methylation differences between the two groups in terms of: (i) systematic differences at CpG sites or regions, (ii) imprinted sites/genes or birth weight-associated sites, (iii) stochastic differences presenting as DNA methylation outliers or differentially variable sites, and (iv) epigenetic gestational age acceleration.

10.
J Clin Oncol ; 40(22): 2426-2435, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35394817

RESUMO

PURPOSE: Noninvasive prenatal testing (NIPT) for fetal aneuploidy screening using cell-free DNA derived from maternal plasma can incidentally raise suspicion for cancer. Diagnostic routing after malignancy suspicious-NIPT faces many challenges. Here, we detail malignancy suspicious-NIPT cases, and describe the clinical characteristics, chromosomal aberrations, and diagnostic routing of the patients with a confirmed malignancy. Clinical lessons can be learned from our experience. METHODS: Patients with NIPT results indicative of a malignancy referred for tumor screening between April 2017 and April 2020 were retrospectively included from a Dutch nationwide NIPT implementation study, TRIDENT-2. NIPT profiles from patients with confirmed malignancies were reviewed, and the pattern of chromosomal aberrations related to tumor type was analyzed. We evaluated the diagnostic contribution of clinical and genetic examinations. RESULTS: Malignancy suspicious-NIPT results were reported in 0.03% after genome-wide NIPT, and malignancies confirmed in 16 patients (16/48, 33.3%). Multiple chromosomal aberrations were seen in 23 of 48 patients with genome-wide NIPT, and a malignancy was confirmed in 16 patients (16/23, 69.6%). After targeted NIPT, 0.005% malignancy suspicious-NIPT results were reported, in 2/3 patients a malignancy was confirmed. Different tumor types and stages were diagnosed, predominantly hematologic malignancies (12/18). NIPT data showed recurrent gains and losses in primary mediastinal B-cell lymphomas and classic Hodgkin lymphomas. Magnetic resonance imaging and computed tomography were most informative in diagnosing the malignancy. CONCLUSION: In 231,896 pregnant women, a low percentage (0.02%) of NIPT results were assessed as indicative of a maternal malignancy. However, when multiple chromosomal aberrations were found, the risk of a confirmed malignancy was considerably high. Referral for extensive oncologic examination is recommended, and may be guided by tumor-specific hallmarks in the NIPT profile.


Assuntos
Neoplasias , Diagnóstico Pré-Natal , Aneuploidia , Aberrações Cromossômicas , Feminino , Seguimentos , Humanos , Gravidez , Diagnóstico Pré-Natal/métodos , Estudos Retrospectivos
11.
Nucleic Acids Res ; 50(11): e63, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35212381

RESUMO

Single-cell whole-genome haplotyping allows simultaneous detection of haplotypes associated with monogenic diseases, chromosome copy-numbering and subsequently, has revealed mosaicism in embryos and embryonic stem cells. Methods, such as karyomapping and haplarithmisis, were deployed as a generic and genome-wide approach for preimplantation genetic testing (PGT) and are replacing traditional PGT methods. While current methods primarily rely on single-nucleotide polymorphism (SNP) array, we envision sequencing-based methods to become more accessible and cost-efficient. Here, we developed a novel sequencing-based methodology to haplotype and copy-number profile single cells. Following DNA amplification, genomic size and complexity is reduced through restriction enzyme digestion and DNA is genotyped through sequencing. This single-cell genotyping-by-sequencing (scGBS) is the input for haplarithmisis, an algorithm we previously developed for SNP array-based single-cell haplotyping. We established technical parameters and developed an analysis pipeline enabling accurate concurrent haplotyping and copy-number profiling of single cells. We demonstrate its value in human blastomere and trophectoderm samples as application for PGT for monogenic disorders. Furthermore, we demonstrate the method to work in other species through analyzing blastomeres of bovine embryos. Our scGBS method opens up the path for single-cell haplotyping of any species with diploid genomes and could make its way into the clinic as a PGT application.


Assuntos
Diagnóstico Pré-Implantação , Animais , Bovinos , Aberrações Cromossômicas , Feminino , Testes Genéticos/métodos , Genótipo , Haplótipos , Humanos , Gravidez , Diagnóstico Pré-Implantação/métodos
12.
Hum Reprod ; 36(11): 2824-2839, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34562078

RESUMO

Liquid biopsy is the process of sampling and analyzing body fluids, which enables non-invasive monitoring of complex biological systems in vivo. Liquid biopsy has myriad applications in health and disease as a wide variety of components, ranging from circulating cells to cell-free nucleic acid molecules, can be analyzed. Here, we review different components of liquid biopsy, survey state-of-the-art, non-invasive methods for detecting those components, demonstrate their clinical applications and discuss ethical considerations. Furthermore, we emphasize the importance of artificial intelligence in analyzing liquid biopsy data with the aim of developing ethically-responsible non-invasive technologies that can enhance individualized healthcare. While previous reviews have mainly focused on cancer, this review primarily highlights applications of liquid biopsy in reproductive medicine.


Assuntos
Ácidos Nucleicos Livres , Neoplasias , Medicina Reprodutiva , Inteligência Artificial , Biomarcadores Tumorais , Biópsia , Humanos , Biópsia Líquida
13.
Nat Med ; 25(11): 1699-1705, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31686035

RESUMO

Although chromosomal instability (CIN) is a common phenomenon in cleavage-stage embryogenesis following in vitro fertilization (IVF)1-3, its rate in naturally conceived human embryos is unknown. CIN leads to mosaic embryos that contain a combination of genetically normal and abnormal cells, and is significantly higher in in vitro-produced preimplantation embryos as compared to in vivo-conceived preimplantation embryos4. Even though embryos with CIN-derived complex aneuploidies may arrest between the cleavage and blastocyst stages of embryogenesis5,6, a high number of embryos containing abnormal cells can pass this strong selection barrier7,8. However, neither the prevalence nor extent of CIN during prenatal development and at birth, following IVF treatment, is well understood. Here we profiled the genomic landscape of fetal and placental tissues postpartum from both IVF and naturally conceived children, to investigate the prevalence and persistence of large genetic aberrations that probably arose from IVF-related CIN. We demonstrate that CIN is not preserved at later stages of prenatal development, and that de novo numerical aberrations or large structural DNA imbalances occur at similar rates in IVF and naturally conceived live-born neonates. Our findings affirm that human IVF treatment has no detrimental effect on the chromosomal constitution of fetal and placental lineages.


Assuntos
Instabilidade Cromossômica/genética , Variações do Número de Cópias de DNA/genética , Desenvolvimento Embrionário/genética , Fertilização in vitro/efeitos adversos , Blastocisto/metabolismo , Linhagem da Célula/genética , Embrião de Mamíferos , Feminino , Feto , Genótipo , Humanos , Recém-Nascido , Masculino , Placenta/metabolismo , Placenta/patologia , Polimorfismo de Nucleotídeo Único/genética , Gravidez
14.
Hum Reprod ; 34(8): 1608-1619, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31348829

RESUMO

STUDY QUESTION: Can reduced representation genome sequencing offer an alternative to single nucleotide polymorphism (SNP) arrays as a generic and genome-wide approach for comprehensive preimplantation genetic testing for monogenic disorders (PGT-M), aneuploidy (PGT-A) and structural rearrangements (PGT-SR) in human embryo biopsy samples? SUMMARY ANSWER: Reduced representation genome sequencing, with OnePGT, offers a generic, next-generation sequencing-based approach for automated haplotyping and copy-number assessment, both combined or independently, in human single blastomere and trophectoderm samples. WHAT IS KNOWN ALREADY: Genome-wide haplotyping strategies, such as karyomapping and haplarithmisis, have paved the way for comprehensive PGT, i.e. leveraging PGT-M, PGT-A and PGT-SR in a single workflow. These methods are based upon SNP array technology. STUDY DESIGN, SIZE, DURATION: This multi-centre verification study evaluated the concordance of PGT results for a total of 225 embryos, including 189 originally tested for a monogenic disorder and 36 tested for a translocation. Concordance for whole chromosome aneuploidies was also evaluated where whole genome copy-number reference data were available. Data analysts were kept blind to the results from the reference PGT method. PARTICIPANTS/MATERIALS, SETTING, METHODS: Leftover blastomere/trophectoderm whole genome amplified (WGA) material was used, or secondary trophectoderm biopsies were WGA. A reduced representation library from WGA DNA together with bulk DNA from phasing references was processed across two study sites with the Agilent OnePGT solution. Libraries were sequenced on an Illumina NextSeq500 system, and data were analysed with Agilent Alissa OnePGT software. The embedded PGT-M pipeline utilises the principles of haplarithmisis to deduce haplotype inheritance whereas both the PGT-A and PGT-SR pipelines are based upon read-count analysis in order to evaluate embryonic ploidy. Concordance analysis was performed for both analysis strategies against the reference PGT method. MAIN RESULTS AND THE ROLE OF CHANCE: PGT-M analysis was performed on 189 samples. For nine samples, the data quality was too poor to analyse further, and for 20 samples, no result could be obtained mainly due to biological limitations of the haplotyping approach, such as co-localisation of meiotic crossover events and nullisomy for the chromosome of interest. For the remaining 160 samples, 100% concordance was obtained between OnePGT and the reference PGT-M method. Equally for PGT-SR, 100% concordance for all 36 embryos tested was demonstrated. Moreover, with embryos originally analysed for PGT-M or PGT-SR for which genome-wide copy-number reference data were available, 100% concordance was shown for whole chromosome copy-number calls (PGT-A). LIMITATIONS, REASONS FOR CAUTION: Inherent to haplotyping methodologies, processing of additional family members is still required. Biological limitations caused inconclusive results in 10% of cases. WIDER IMPLICATIONS OF THE FINDINGS: Employment of OnePGT for PGT-M, PGT-SR, PGT-A or combined as comprehensive PGT offers a scalable platform, which is inherently generic and thereby, eliminates the need for family-specific design and optimisation. It can be considered as both an improvement and complement to the current methodologies for PGT. STUDY FUNDING/COMPETING INTEREST(S): Agilent Technologies, the KU Leuven (C1/018 to J.R.V. and T.V.) and the Horizon 2020 WIDENLIFE (692065 to J.R.V. and T.V). H.M. is supported by the Research Foundation Flanders (FWO, 11A7119N). M.Z.E, J.R.V. and T.V. are co-inventors on patent applications: ZL910050-PCT/EP2011/060211- WO/2011/157846 'Methods for haplotyping single cells' and ZL913096-PCT/EP2014/068315 'Haplotyping and copy-number typing using polymorphic variant allelic frequencies'. T.V. and J.R.V. are co-inventors on patent application: ZL912076-PCT/EP2013/070858 'High-throughput genotyping by sequencing'. Haplarithmisis ('Haplotyping and copy-number typing using polymorphic variant allelic frequencies') has been licensed to Agilent Technologies. The following patents are pending for OnePGT: US2016275239, AU2014345516, CA2928013, CN105874081, EP3066213 and WO2015067796. OnePGT is a registered trademark. D.L., J.T. and R.L.R. report personal fees during the conduct of the study and outside the submitted work from Agilent Technologies. S.H. and K.O.F. report personal fees and other during the conduct of the study and outside the submitted work from Agilent Technologies. J.A. reports personal fees and other during the conduct of the study from Agilent Technologies and personal fees from Agilent Technologies and UZ Leuven outside the submitted work. B.D. reports grants from IWT/VLAIO, personal fees during the conduct of the study from Agilent Technologies and personal fees and other outside the submitted work from Agilent Technologies. In addition, B.D. has a patent 20160275239 - Genetic Analysis Method pending. The remaining authors have no conflicts of interest.


Assuntos
Testes Genéticos/métodos , Haplótipos , Diagnóstico Pré-Implantação/métodos , Técnicas de Cultura Embrionária , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Gravidez
15.
Hum Reprod ; 33(12): 2302-2311, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30383227

RESUMO

STUDY QUESTION: Can genome-wide haplotyping increase success following preimplantation genetic testing for a monogenic disorder (PGT-M) by including zygotes with absence of pronuclei (0PN) or the presence of only one pronucleus (1PN)? SUMMARY ANSWER: Genome-wide haplotyping 0PNs and 1PNs increases the number of PGT-M cycles reaching embryo transfer (ET) by 81% and the live-birth rate by 75%. WHAT IS KNOWN ALREADY: Although a significant subset of 0PN and 1PN zygotes can develop into balanced, diploid and developmentally competent embryos, they are usually discarded because parental diploidy detection is not part of the routine work-up of PGT-M. STUDY DESIGN, SIZE, DURATION: This prospective cohort study evaluated the pronuclear number in 2229 zygotes from 2337 injected metaphase II (MII) oocytes in 268 cycles. PGT-M for 0PN and 1PN embryos developing into Day 5/6 blastocysts with adequate quality for vitrification was performed in 42 of the 268 cycles (15.7%). In these 42 cycles, we genome-wide haplotyped 216 good quality embryos corresponding to 49 0PNs, 15 1PNs and 152 2PNs. The reported outcomes include parental contribution to embryonic ploidy, embryonic aneuploidy, genetic diagnosis for the monogenic disorder, cycles reaching ETs, pregnancy and live birth rates (LBR) for unaffected offspring. PARTICIPANTS/MATERIALS, SETTING, METHODS: Blastomere DNA was whole-genome amplified and hybridized on the Illumina Human CytoSNP12V2.1.1 BeadChip arrays. Subsequently, genome-wide haplotyping and copy-number profiling was applied to investigate the embryonic genome architecture. Bi-parental, unaffected embryos were transferred regardless of their initial zygotic PN score. MAIN RESULTS AND THE ROLE OF CHANCE: A staggering 75.51% of 0PN and 42.86% of 1PN blastocysts are diploid bi-parental allowing accurate genetic diagnosis for the monogenic disorder. In total, 31% (13/42) of the PGT-M cycles reached ET or could repeat ET with an unaffected 0PN or 1PN embryo. The LBR per initiated cycle increased from 9.52 to 16.67%. LIMITATIONS, REASONS FOR CAUTION: The clinical efficacy of the routine inclusion of 0PN and 1PN zygotes in PGT-M cycles should be confirmed in larger cohorts from multicenter studies. WIDER IMPLICATIONS OF THE FINDINGS: Genome-wide haplotyping allows the inclusion of 0PN and 1PN embryos and subsequently increases the cycles reaching ET following PGT-M and potentially PGT for aneuploidy (PGT-A) and chromosomal structural rearrangements (PGT-SR). Establishing measures of clinical efficacy could lead to an update of the ESHRE guidelines which advise against the use of these zygotes. STUDY FUNDING/COMPETING INTEREST(S): SymBioSys (PFV/10/016 and C1/018 to J.R.V. and T.V.), the Horizon 2020 WIDENLIFE: 692065 to J.R.V., T.V., E.D., A.D. and M.Z.E. M.Z.E., T.V. and J.R.V. co-invented haplarithmisis ('Haplotyping and copy-number typing using polymorphic variant allelic frequencies'), which has been licensed to Agilent Technologies. H.M. is fully supported by the (FWO) (ZKD1543-ASP/16). The authors have no competing interests to declare.


Assuntos
Transferência Embrionária/métodos , Desenvolvimento Embrionário/fisiologia , Testes Genéticos , Haplótipos , Diagnóstico Pré-Implantação/métodos , Técnicas de Cultura Embrionária , Feminino , Humanos , Gravidez , Estudos Prospectivos , Zigoto
16.
Hum Reprod ; 32(11): 2348-2357, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29040498

RESUMO

STUDY QUESTION: Is the rate and nature of chromosome instability (CIN) similar between bovine in vivo-derived and in vitro-cultured cleavage-stage embryos? SUMMARY ANSWER: There is a major difference regarding chromosome stability of in vivo-derived and in vitro-cultured embryos, as CIN is significantly lower in in vivo-derived cleavage-stage embryos compared to in vitro-cultured embryos. WHAT IS KNOWN ALREADY: CIN is common during in vitro embryogenesis and is associated with early embryonic loss in humans, but the stability of in vivo-conceived cleavage-stage embryos remains largely unknown. STUDY DESIGN, SIZE, DURATION: Because human in vivo preimplantation embryos are not accessible, bovine (Bos taurus) embryos were used to study CIN in vivo. Five young, healthy, cycling Holstein Friesian heifers were used to analyze single blastomeres of in vivo embryos, in vitro embryos produced by ovum pick up with ovarian stimulation (OPU-IVF), and in vitro embryos produced from in vitro matured oocytes retrieved without ovarian stimulation (IVM-IVF). PARTICIPANTS/MATERIALS, SETTING, METHODS: Single blastomeres were isolated from embryos, whole-genome amplified and hybridized on Illumina BovineHD BeadChip arrays together with the bulk DNA from the donor cows (mothers) and the bull (father). DNA was also obtained from the parents of the bull and from the parents of the cows (paternal and maternal grandparents, respectively). Subsequently, genome-wide haplotyping and copy-number profiling was applied to investigate the genomic architecture of 171 single bovine blastomeres of 16 in vivo, 13 OPU-IVF and 13 IVM-IVF embryos. MAIN RESULTS AND THE ROLE OF CHANCE: The genomic stability of single blastomeres in both of the in vitro-cultured embryo cohorts was severely compromised (P < 0.0001), and the frequency of whole chromosome or segmental aberrations was higher in embryos produced in vitro than in embryos derived in vivo. Only 18.8% of in vivo-derived embryos contained at least one blastomere with chromosomal anomalies, compared to 69.2% of OPU-IVF embryos (P < 0.01) and 84.6% of IVM-IVF embryos (P < 0.001). LARGE SCALE DATA: Genotyping data obtained in this study has been submitted to NCBI Gene Expression Omnibus (GEO; accession number GSE95358). LIMITATIONS REASONS FOR CAUTION: There were two main limitations of the study. First, animal models may not always reflect the nature of human embryogenesis, although the use of an animal model to investigate CIN was unavoidable in our study. Second, a limited number of embryos were obtained, therefore more studies are warranted to corroborate the findings. WIDER IMPLICATIONS OF THE FINDINGS: Although CIN is also present in in vivo-developed embryos, in vitro procedures exacerbate chromosomal abnormalities during early embryo development. Hence, the present study highlights that IVF treatment compromises embryo viability and should be applied with care. Additionally, our results encourage to refine and improve in vitro culture conditions and assisted reproduction technologies. STUDY FUNDING/COMPETING INTEREST(S): The study was funded by the Agency for Innovation by Science and Technology (IWT) (TBM-090878 to J.R.V. and T.V.), the Research Foundation Flanders (FWO; G.A093.11 N to T.V. and J.R.V. and G.0392.14 N to A.V.S. and J.R.V.), the European Union's FP7 Marie Curie Industry-Academia Partnerships and Pathways (IAPP, SARM, EU324509 to J.R.V., T.V., O.T, A.D., A.S. and A.K.) and Horizon 2020 innovation programme (WIDENLIFE, 692065 to J.R.V., O.T., T.V., A.K. and A.S.). M.Z.E., J.R.V. and T.V. are co-inventors on a patent application ZL913096-PCT/EP2014/068315-WO/2015/028576 ('Haplotyping and copy-number typing using polymorphic variant allelic frequencies'), licensed to Cartagenia (Agilent Technologies).


Assuntos
Blastocisto/metabolismo , Técnicas de Cultura Embrionária/veterinária , Instabilidade Genômica/fisiologia , Animais , Blastômeros/fisiologia , Bovinos , Feminino , Técnicas de Maturação in Vitro de Oócitos/veterinária , Indução da Ovulação/veterinária
17.
Genome Biol ; 17(1): 250, 2016 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-27931250

RESUMO

BACKGROUND: Single-cell micro-metastases of solid tumors often occur in the bone marrow. These disseminated tumor cells (DTCs) may resist therapy and lay dormant or progress to cause overt bone and visceral metastases. The molecular nature of DTCs remains elusive, as well as when and from where in the tumor they originate. Here, we apply single-cell sequencing to identify and trace the origin of DTCs in breast cancer. RESULTS: We sequence the genomes of 63 single cells isolated from six non-metastatic breast cancer patients. By comparing the cells' DNA copy number aberration (CNA) landscapes with those of the primary tumors and lymph node metastasis, we establish that 53% of the single cells morphologically classified as tumor cells are DTCs disseminating from the observed tumor. The remaining cells represent either non-aberrant "normal" cells or "aberrant cells of unknown origin" that have CNA landscapes discordant from the tumor. Further analyses suggest that the prevalence of aberrant cells of unknown origin is age-dependent and that at least a subset is hematopoietic in origin. Evolutionary reconstruction analysis of bulk tumor and DTC genomes enables ordering of CNA events in molecular pseudo-time and traced the origin of the DTCs to either the main tumor clone, primary tumor subclones, or subclones in an axillary lymph node metastasis. CONCLUSIONS: Single-cell sequencing of bone marrow epithelial-like cells, in parallel with intra-tumor genetic heterogeneity profiling from bulk DNA, is a powerful approach to identify and study DTCs, yielding insight into metastatic processes. A heterogeneous population of CNA-positive cells is present in the bone marrow of non-metastatic breast cancer patients, only part of which are derived from the observed tumor lineages.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Células Neoplásicas Circulantes/metabolismo , Análise de Sequência de DNA , Análise de Célula Única , Adulto , Idoso , Idoso de 80 Anos ou mais , Substituição de Aminoácidos , Axila , Biomarcadores Tumorais , Células da Medula Óssea/metabolismo , Neoplasias da Mama/metabolismo , Variações do Número de Cópias de DNA , Humanos , Imuno-Histoquímica , Linfonodos/patologia , Pessoa de Meia-Idade , Mutação , Gradação de Tumores , Metástase Neoplásica , Estadiamento de Neoplasias , Células Neoplásicas Circulantes/patologia , Análise de Célula Única/métodos
18.
Genome Res ; 26(5): 567-78, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27197242

RESUMO

Dramatic genome dynamics, such as chromosome instability, contribute to the remarkable genomic heterogeneity among the blastomeres comprising a single embryo during human preimplantation development. This heterogeneity, when compatible with life, manifests as constitutional mosaicism, chimerism, and mixoploidy in live-born individuals. Chimerism and mixoploidy are defined by the presence of cell lineages with different parental genomes or different ploidy states in a single individual, respectively. Our knowledge of their mechanistic origin results from indirect observations, often when the cell lineages have been subject to rigorous selective pressure during development. Here, we applied haplarithmisis to infer the haplotypes and the copy number of parental genomes in 116 single blastomeres comprising entire preimplantation bovine embryos (n = 23) following in vitro fertilization. We not only demonstrate that chromosome instability is conserved between bovine and human cleavage embryos, but we also discovered that zygotes can spontaneously segregate entire parental genomes into different cell lineages during the first post-zygotic cleavage division. Parental genome segregation was not exclusively triggered by abnormal fertilizations leading to triploid zygotes, but also normally fertilized zygotes can spontaneously segregate entire parental genomes into different cell lineages during cleavage of the zygote. We coin the term "heterogoneic division" to indicate the events leading to noncanonical zygotic cytokinesis, segregating the parental genomes into distinct cell lineages. Persistence of those cell lines during development is a likely cause of chimerism and mixoploidy in mammals.


Assuntos
Blastocisto/metabolismo , Blastômeros/metabolismo , Linhagem da Célula/fisiologia , Quimerismo/embriologia , Genoma , Ploidias , Zigoto/metabolismo , Animais , Bovinos , Humanos
19.
Methods Mol Biol ; 1347: 197-219, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26374319

RESUMO

Whole genome amplification is required to ensure the availability of sufficient material for copy number variation analysis of a genome deriving from an individual cell. Here, we describe the protocols we use for copy number variation analysis of non-fixed single cells by array-based approaches following single-cell isolation and whole genome amplification. We are focusing on two alternative protocols, an isothermal and a PCR-based whole genome amplification method, followed by either comparative genome hybridization (aCGH) or SNP array analysis, respectively.


Assuntos
Hibridização Genômica Comparativa/métodos , Variações do Número de Cópias de DNA , Genoma , Técnicas de Amplificação de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Célula Única/métodos , Genômica/métodos , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Nucleotídeo Único
20.
Am J Hum Genet ; 96(6): 894-912, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-25983246

RESUMO

Methods for haplotyping and DNA copy-number typing of single cells are paramount for studying genomic heterogeneity and enabling genetic diagnosis. Before analyzing the DNA of a single cell by microarray or next-generation sequencing, a whole-genome amplification (WGA) process is required, but it substantially distorts the frequency and composition of the cell's alleles. As a consequence, haplotyping methods suffer from error-prone discrete SNP genotypes (AA, AB, BB) and DNA copy-number profiling remains difficult because true DNA copy-number aberrations have to be discriminated from WGA artifacts. Here, we developed a single-cell genome analysis method that reconstructs genome-wide haplotype architectures as well as the copy-number and segregational origin of those haplotypes by employing phased parental genotypes and deciphering WGA-distorted SNP B-allele fractions via a process we coin haplarithmisis. We demonstrate that the method can be applied as a generic method for preimplantation genetic diagnosis on single cells biopsied from human embryos, enabling diagnosis of disease alleles genome wide as well as numerical and structural chromosomal anomalies. Moreover, meiotic segregation errors can be distinguished from mitotic ones.


Assuntos
Algoritmos , Dosagem de Genes/genética , Genoma Humano/genética , Haplótipos/genética , Modelos Genéticos , Diagnóstico Pré-Implantação/métodos , Análise de Célula Única/métodos , Aberrações Cromossômicas , Primers do DNA/genética , Genótipo , Humanos , Hibridização in Situ Fluorescente , Técnicas de Amplificação de Ácido Nucleico , Polimorfismo de Nucleotídeo Único/genética , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA